Epistasis, not numbers, regulates functions of clustered Dahl rat quantitative trait loci applicable to human hypertension.
نویسندگان
چکیده
Quantitative trait loci (QTLs) for blood pressure (BP) were found on chromosome 10 of Dahl salt-sensitive rats and are potentially important to human essential hypertension. But their identities and how they influence BP together were not known. Presently, we first fine mapped existing QTLs, C10QTL1, C10QTL2, and C10QTL3, by constructing congenic strains. In the process, a new QTL, C10QTL4, was identified. Because the intervals harboring C10QTL1 and C10QTL4 contain a maximum of 16 and 10 possible genes, respectively, a limited number of specific gene targets has been identified to be QTLs residing in human homologous regions on chromosome 17. Moreover, because none of these candidates encodes a gene known to influence BP, the 2 QTLs will represent novel genes for BP regulations. Second, we used congenic strains with QTL combinations to analyze the interactions between the QTLs. Consequently, a double combination of C10QTL4 and C10QTL1 possessed the same BP as each of the 2 QTLs alone. BP of a triple combination of C10QTL4, C10QTL1, and C10QTL3 was not different from BP of the C10QTL4 and C10QTL1 double combination. These results demonstrate that C10QTL4, C10QTL1, and C10QTL3 are epistatic to one another in their BP effects. In contrast, when adding C10QTL2 into the triple formation of the 3 QTLs above to create a quadruple QTL combination, BP increased proportionately, indicating that C10QTL2 acts independently of C10QTL4, C10QTL1, and C10QTL3. The epistatic and additive interactions uncovered in the animal model will help elucidate similar interactions playing a role in human essential hypertension.
منابع مشابه
Klk1 as one of the genes contributing to hypertension in Dahl salt-sensitive rat.
A genome-wide quantitative trait loci analysis for blood pressure was performed using 107 male F2 rats derived from Dahl salt-sensitive and Lewis rats. Blood pressure was assessed by telemetry, and >400 microsatellite markers were used for genotyping. Two major quantitative trait loci for blood pressure were identified at chromosome 1 and chromosome 10. The expression levels of 366 transcripts ...
متن کاملInteraction between blood pressure quantitative trait loci in rats in which trait variation at chromosome 1 is conditional upon a specific allele at chromosome 10.
We have used inbred and congenic rat strains in F(2) segregation studies to discover epistasis in a polygenic model of hypertension. Previously, we have found evidence that the presence of a blood pressure quantitative trait locus (QTL) on chromosome 1 is conditional upon the allele status of chromosome 10. To prove the existence of an epistatic interaction we have analyzed congenic strains for...
متن کاملGenetic mapping of soluble guanylyl cyclase genes: implications for linkage to blood pressure in the Dahl rat.
The nitric oxide (NO) signaling system, consisting of NO synthases, soluble guanylyl cyclase, and cGMP, plays a prominent role in salt handling and regulation of blood pressure. Soluble guanylyl cyclases are heme-containing heterodimers (alpha/beta). The alpha1/beta1 isoform has greater NO sensitivity than the alpha1/beta2. It has recently been shown that expression of the beta subunits is alte...
متن کاملEpistatic genetic determinants of blood pressure and mortality in a salt-sensitive hypertension model.
Although genetic determinants protecting against the development of elevated blood pressure (BP) are well investigated, less is known regarding their impact on longevity. We concomitantly assessed genomic regions of rat chromosomes 3 and 7 (RNO3 and RNO7) carrying genetic determinants of BP without known epistasis, for their independent and combinatorial effects on BP and the presence of geneti...
متن کاملComprehensive congenic coverage revealing multiple blood pressure quantitative trait loci on Dahl rat chromosome 10.
Chromosome mapping based on congenic strains can restrict quantitative trait loci (QTLs) for blood pressure (BP) into small intervals that are otherwise indistinguishable in linkage analysis. Also, congenic strains can be created to test a candidate gene to be a BP QTL. Taking full advantage of these features, we produced 10 congenic strains by replacing various segments of chromosome (Chr) 10 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 46 6 شماره
صفحات -
تاریخ انتشار 2005